

A conceptual framework for predicting error in complex
 human-machine environments

Michael Freed and Roger Remington

NASA Ames Research Center

{mfreed, rremington@}mail.arc.nasa.gov

Abstract

We present a GOMS-MHP style
model-based approach to the problem
of predicting human habit capture
errors. Habit captures occur when the
model fails to allocate limited
cognitive resources to retrieve task-
relevant information from memory.
Lacking the unretrieved information,
decision mechanisms act in accordance
with implicit default assumptions,
resulting in error when relied upon
assumptions prove incorrect. The
model helps interface designers
identify situations in which such
failures are especially likely.

Introduction

Advances in our understanding of human
cognition have not informed the design of
complex human-machine systems to the
extent possible. This results in part
because the complexity of these systems

poses a formidable challenge, and in part
because the knowledge is not in form that
can readily be applied in a design setting.
Much of our knowledge of human
capabilities and limitations comes from
laboratory experiments using simple tasks
and tight controls over extraneous
variables. These controls are necessary to
isolate mental operations of interest.
However, it is hard to generalize the
results to complex applied environments in
which operators must plan the execution of
multiple concurrent tasks in the face of
considerable uncertainty. Under these
conditions, no single mental operation
determines behavior. Rather, it is
necessary to understand how the diverse
set of internal resources is managed to
accomplish tasks. Even when certain
known facts about human performance
could be usefully applied in design,
human-system designers would have
difficulty locating those facts and
understanding how they might apply to
their specific problem. Such facts are

often buried in bulky sets of guidelines,
whose rules themselves are often difficult
to match to specific problems. Or, they are
contained in scientific journals not easily
comprehended by non-specialists.
Handbooks can be useful, but still require
the designer to know what information is
needed and how to match the design
requirements to the available data.

The introduction of GOMS
modeling in conjunction with the Model
Human Processor [Card84], made
available a promising new methodology
for dealing with complexity at a systems
level. The Model Human Processor
(MHP) provided researchers with a
cognitive architecture whose resources and
parameters constrained behavior while
GOMS provided a formal method for
procedure execution that enabled the
representation of rules and procedures for
selecting action in complex task domains
[John94; Gray93].

Despite the success and widespread
use of GOMS modeling, it has proven
difficult to account for human error, or to
handle the executive control needed to
manage multiple tasks. These are
significant shortcomings when modeling
domains such as air traffic control where
the coordination of multiple tasks is central
and the concern with human error
paramount. If we are to develop
representations of human behavior that aid
the designers of procedures and displays
for air traffic control, we must deal directly
with the source of human error in a
dynamic, multitasking environment.

We have constructed a human operator
model called APEX that is intended to

help identify situations in which the design
of equipment and procedures might
inadvertently contribute to operator error
[Freed97]. In keeping with the GOMS-
MHP approach, APEX combines
mechanisms for proceduralized task
execution with a cognitive architecture that
specifies resources. Our choice for a task
execution model was driven by the
demand for flexible scheduling of multiple
tasks [Freed98a]. We replaced the GOMS
component with a similar but more
powerful procedure execution mechanism
based on RAPs [Firby89]. Originally
designed to enable robots to interleave and
coordinate multiple tasks in dynamic,
uncertain task environments, the RAP
approach provides several important
capabilities including:

?? continuous coordination of concurrent

activities
?? diverse mechanisms for handling task

interruption, task switching, and
resumption

?? mechanisms needed to cope with
uncertainty inherent in complex,
dynamic environments

?? monitoring for and recovering from
task failure

Our implementation of these

capabilities is embedded within a human
resource architecture that enforces human
limitations on behavior [Freed98b].
Components of the architecture, each
representing a perceptual, cognitive, or
motor resource, are associated with
limitations and parameters. For example,
the vision component has a locus-of-

attention parameter. Execution can set this
value to a single location in the current
visual field. Because the visual
component restricts access to visual
information outside the selected location,
agent performance depends on the
effectiveness with which the locus-of-
attention resource is allocated.

Using the execution module and
resource architecture to simulate human
behavior requires specifying domain-
specific rules and procedures.
Performance will depend on how those
procedures use limited resources to carry
out a task. Thus, the process of specifying
procedures should be informed by an
understanding of the strategies people use
to manage limited resources. For example,
people sometimes rely on written lists
rather than faulty memory when shopping
for groceries, or scan the market shelves
for needed items, replacing a difficult
memory task (recall) with an easier one
(recognition). Such strategies become
incorporated into people's routine
procedures for carrying out a task,
enabling them to circumvent limits that
would otherwise affect performance
[Salthouse91]. Modeling the effects of
resource limitations on performance thus
requires representing the procedural end-
product of adaptation to routine tasks.
While these adaptations are generally
useful, they create the opportunity for
error. We will discuss the role of such
adaptations in producing a form of error
called a habit capture and present a human
operator model that incorporates this
analysis to predict error in realistically
complex environments.

Habit Capture Errors

Human error is an important concern in
safety-critical work environments such as
air traffic control. A survey of air traffic
control related errors revealed that a high
percentage of controller errors involve
failures to carry out some intent, or failure
to apply updated knowledge of the world
in selecting an action. Errors involving
failures to execute deferred intentions are
examples of a class of memory phenomena
referred to as prospective memory.
Failures of prospective memory are
common in daily life and include such
errors as failing to take medication at
prescribed times. Typical of prospective
memory failures, operators often
recognized their error shortly afterward.
This suggests that at least some cases of
prospective memory failures result not
from a failure to successfully retrieve
information, but a failure to make a
retrieval attempt.

Our model ascribes such failures to
initiate retrieval to the misallocation of
limited resources during action selection.
We illustrate the model using a class of
prospective memory errors that we term
habit captures. The signature of a habit
capture error is the execution of a habitual
action in place of an intended but non-
routine action [Reason82]. A common
example of such an error might be the
failure to stop at the market on the way
home. The intent is formed before leaving
work, but cannot be carried out until the
car reaches a specific turn-off. When this
occurs, instead of exiting the highway at

the intended exit, the driver proceeds on
the normal, habitual route.

Accounting for habit captures that
result from failure to initiate a memory
retrieval requires an understanding of
when retrievals occur. By retrieval, we
refer to memory access that requires the
allocation of a limited capacity resource
that model can only retrieve one item of
information at a time [Carrier95]. The
model assumes that no capacity-limited
memory access is required for routine
behaviors, which are encoded directly in
procedures. For non-routine behaviors,
the model must decide whether or not to
allocate limited resources to retrieve the
required information. It is this difference
in the resource demands of routine and
non-routine information that underlies the
generation of habit capture errors.

Anomaly-driven retrieval

In making decisions about how to allocate
resources, the model is guided by
observed anomalies and internal goals.
Anomaly-driven memory retrievals are
initiated to explain unusual or ambiguous
aspects of the current task environment.
For example observing a basket of laundry
in the middle of one’s living room might
trigger an attempt to locate an explanation
in memory. People can take advantage of
this aspect of human memory processing
to provide timely reminders that help
manage tasks. Thus, a person might
intentionally place laundry in a
conspicuous, atypical location as a
reminder to do the wash. Similarly, people
make use of unintended or incidental

perceptual structure in the task
environment to cue retrievals. For
instance, if one were interrupted while
bringing laundry to a washing machine,
setting the laundry basket down might later
serve to remind one to resume the task.

To simulate these anomaly-driven memory
retrievals, our model assumes that people
acquire expectations about the perceptual
structure of their task environment and that
they monitor these expectations in the
normal course of carrying out a task. We
further assume that when the environment
regularly provides timely perceptual
indicators that a memory retrieval is
warranted, human decision-making
processes adapt to take advantage of them.
Such adaptations have been demonstrated
in a variety of task domains; in some
cases, people seem to use goal-driven
retrieval in the early stage of learning a
task, but gradually come to rely on
perceptual indicators to initiate retrieval
(see e.g. [Vera96]).

Learning to use environmental cues
can be seen as an adaptive response to
opportunity-costs associated with memory
retrieval. Since only one memory retrieval
attempt can be processed at a time, use of
retrieval mechanisms for one task blocks
or delays their use for all other tasks.
Though they provide an efficient way to
manage a limited resource, adaptations
that rely on perceptual cues entail their
own cost. In particular, when the usual
cues are absent, reliance upon them may
result in failure. For example, if someone
removes a basket of laundry from the
living room, its value in reminding a

person of their cleaning task will be
undermined. More generally, habit
capture errors are especially likely when
perceptual indicators normally present in
the task environment are absent, and thus
cannot trigger needed memory recall
actions.

It is helpful in analyzing such
failures to contrast nominal behavior, in
which a timely memory retrieval results in
correct behavior, from error behavior in
which no retrieval is initiated. In the latter
case, a person behaves as if the
unretrieved memory item had never been
encoded. Decision-making processes can
be described as operating under an implicit
default assumption that some typical
condition, opposite that implied by the
memory item, holds in the current
situation. In the example in which an
intentionally placed laundry basket was
removed and a failure to do laundry
results, we could thus say that decision
mechanisms implicitly assume that no
intention to do laundry exists. The idea of
a default assumption is useful in specifying
what behavior is likely to follow when a
relevant memory item is not retrieved. It
also serves a useful practical purpose in
explaining simulated behavior, allowing
the simulation trace to make explicit
reference to a critical non-event — i.e. the
non-occurrence of a retrieval attempt.

Goal-driven retrieval

Goal-driven retrievals are initiated to
acquire information for some active task.
For example, one might query memory to
determine where the car is parked when

deciding where to exit a large office
building. In our model [Freed98a], routine
goal-driven behavior results from the
execution of procedures, each represented
as a set of primitive and non-primitive
steps. Executing a primitive initiates
activity in model resources, specifying
simple actions such a gaze shift, utterance,
or memory retrieval attempt.

Non-primitives specify a subgoal
that, in many cases, can be accomplished
by any of several alternative methods,
each represented as a separate procedure.
Executing a non-primitive requires
selecting a method and then recursively
executing each of its steps. Procedures
often include information acquisition
steps that satisfy information prerequisites
for subsequent steps of the same
procedure. For example, a procedure for
getting home from work might include
steps to acquire the location of one’s car
and then go to the specified location.

In many cases, information
acquisition can be achieved by any of
several alternative methods. Decision
mechanisms can also forego explicit
information acquisition, especially in
highly routine tasks where the outcome of
the acquisition process would tend to be
some predictable value; instead, behavior
conforms to the default assumption that
this predictable value holds in the current
situation. Thus, the exit path from one’s
office building can be selected by
retrieving the car’s current location from
memory, visually scanning for the car out a
window, or asking a companion.
Alternately, one can simply leave by the
usual exit without ever explicitly

considering the car’s location. The
implementation of our model treats
reliance on a default explicitly — i.e. as
another method for acquiring task-relevant
information. To reflect its psychological
status as an implicit rather than explicit
event, the method of relying on a default
takes no time and requires no limited
resources.

In our model, which information
acquisition method (including reliance on a
default) is used in a particular instance
depends on several factors. For this
discussion, we will focus on one such
factor. In particular, after learning of some
unusual situation, we assume that a person
will be less likely to rely on a default (that
the usual situation holds) for some time
thereafter. For instance, if a person parks
his/her car somewhere other than the usual
location, decision mechanisms that usually
rely on the default location will have an
increased likelihood of retrieving location
from memory when exiting the building.
We further assume that this likelihood
decreases to the usual level over time,
although time here is just a proxy for
interference and other cognitive
phenomena not currently represented in
the model.

The likelihood of a habit capture
error will thus depend partly on the
amount of time since an unusual condition
was observed and partly on the rate at
which increased likelihood of retrieval
declines. Our model handles the process
of determining whether decision-
mechanisms rely on a default or retrieve
from memory in a simplified way.
Whenever an intention or unusual

condition is encoded (or retrieved), the
model generates bias, causing any attempt
to acquire information about that condition
to avoid reliance on the default.
Representations of bias are associated
with a fixed expiration interval; when
this interval has passed, the decision
mechanisms revert to the usual method of
determining an information acquisition
method for the specified condition.

Like Anderson [1990], we assume
that adaptive processes largely determine
memory behavior, allowing experienced
practitioners of a task to approximate
optimal expiration interval values. An
optimal interval weighs the risk of habit
capture against the opportunity cost and
time cost of retrieving a memory value that
merely confirms the default. The ability of
memory to approximate near-optimal
intervals depends on experientially-derived
knowledge of factors such as the expected
duration D of a non-default condition,
expected interval I between successive
observations of a non-default (bias is
refreshed each time the condition is
observed), and expected risk of reducing
performance at another task by blocking
retrieval (opportunity cost). We
approximate optimum expiration interval
EI = min(D,I).
 Since bias can be maintained by
retrieving the non-default condition from
memory, anomaly-driven mechanisms that
use retrieval to explain non-default
conditions can be used to support goal-
driven retrieval. For instance, placing a
written reminder that one’s car is parked at
an unusual location in a conspicuous place,
and observing the reminder during the day,

increases the likelihood that decision
mechanisms will explicitly consider the
car’s location when determining where to
exit the building. Such strategies will tend
to fail (and result in habit capture errors)
in the same conditions that the purely
anomaly-driven strategies will fail — i.e.
when needed perceptual support is absent.
We illustrate how our model simulates
such an error in a hypothetical air traffic
control scenario. Greater detail about the
implementation of the model is given in
[Freed98b].

Example air traffic control scenario

At a Terminal Radar Control center, one
controller will often be assigned to the task
of guiding planes through a region of
airspace called an "approach sector"
[Stein93]. This task involves contacting
planes at various sector entry points and
getting them lined up at a safe distance
from one another on landing approach to a
particular airport. Some airports have two
parallel runways. In such cases, the
controller will form planes up into two
lines. Occasionally, a controller will be
told that one of the two runways is closed
and that all planes on approach to land
must be directed to the remaining open
runway. A controller's ability to direct
planes exclusively to the open runway
depends on remembering that the other
runway is closed. How does the controller
remember this important fact? Normally,
the diversion of all inbound planes to the
open runway produces an easily perceived
reminder. In particular, the controller will
detect only a single line of planes on

approach to the airport, even though two
lines (one to each runway) would normally
be expected.

However, problems can arise in
conditions of low workload. With few
planes around, there is no visually distinct
line of planes to either runway. Thus, the
usual situation in which both runways are
available is perceptually indistinguishable
from the case of a single closed runway.
The lack of perceptual support would then
force the controller to rely on memory-
driven retrieval and thus increase the
chance of error.

Simulation and Implementation

In our air traffic controller simulation
model, the arrival of a plane at a certain
position in airspace (as observed on the
radar display) causes the simulated
controller to begin the task of selecting a
destination runway for the target plane.
We assume that for highly routine
decisions such as runway selection, human
controllers can be expected to know which
factors to consider in making the decision
and how to appropriately weight each
factor. This knowledge is incorporated
into the following decision procedure:

Procedure27: select runway for ?plane
1) determine which runway has fewer

planes on approach => ?factor1
2) det. which approach would be faster

=> ?factor2
3) det. which approach easier for me

=> ?factor3

4) det. which runway safest for ?plane
=> ?factor4

5) det. left runway open? => ?factor5
6) det. right runway open? => ?factor6
7) compute-decision

(factor1,factor2,..)

Generally, a decision procedure
consists of n steps. The first (n-1)
prescribe information acquisition tasks to
evaluate potentially decision-relevant
factors. The nth step runs a simple rule
that selects from a fixed set of decision
alternatives (left-runway or right-runway
in this case) based on factor values.

Factor evaluation steps can typically
be accomplished by any of several
methods. In this example, the controller
could determine the status of the left
runway by retrieving information from
memory, asking another controller, or by
assuming the most likely condition – i.e.
that the runway is open. Since runway
closures are rare and memory retrieval is
expensive, we assume that a typical
controller will rely on the default unless
transient bias promotes a more effortful
alternative.

In the described scenario, the simulated
controller hears that the left runway is
closed. Interpretation mechanisms cause a
propositional representation of this fact to
be encoded in memory. The encoding
event generates bias according to the
following rule:

 IF (closed ?runway) is encoded in
memory
 THEN bias procedure-27, step5.
(expire in 10 min)

Consequently, procedure execution

mechanisms will be biased against relying
on the default value when carrying out
step5 of procedure27 for the next ten
minutes — i.e. the availability of the left
runway will be verified rather than
assumed when selecting a runway for an
approaching plane.

Eventually, the initial bias expires.
To select a runway for a newly arrived
plane, the controller will once again
consider only the default assumption.
Other factors then determine which
runway is selected. For example, the
controller may choose to direct a heavy
plane to the longer left runway which, in
normal circumstances, would allow the
plane an easier and safer landing. With
the left runway closed, actions following
from this decision result in error.

Avoiding error requires maintaining
appropriate bias. In a variation of the
described scenario in which no error
occurs, visually perceived reminders of the
runway closure cause bias to be
periodically renewed. In particular,
whenever visual attention mechanisms
attend to plane icons on an approach path
to the airport, interpretation mechanisms
note the absence of a line of planes to the
left runway and signal an expectation
failure on the basis of the following rule:

 IF I am visually attending to left
approach path, and
 visual group of plane icons not
detected

 THEN signal-anomaly: (absent plane-
group left)

In general, whenever an expectation
failure occurs, a task to explain the
observed anomaly is initiated. The first
step in such a task is to try to match the
anomaly to a known explanation-pattern
(XP) [Schank86]. A match results in a
task to verify the explanatory hypothesis
provided by the XP.

Explanation-pattern
 Anomaly: (absent plane-group ?left-or-
right)

 Candidate Explanation: (closed runway
?runway)

 To verify: retrieve from memory (closed
runway ?runway)

In principle, verifying a hypothesis

could involve mental and physical actions
of any kind. In this case, the contents of
working memory are sufficient to prove or
disprove the explanation; the anomalous
absence of planes on approach to the left
runway is explained as a result of the left
runway's closure.

Bias renewal occurs whenever the
working memory item that originally
produced the bias is reencoded or
retrieved. Thus, retrieving (closed runway
left) triggers the bias generation rule just
as if the proposition had been encoded for
the first time. Thus, the unusual
arrangement of planes on the radar scope
acts as a constant reminder, preventing the
controller from reverting to the use of its
default assumption and thereby preventing
error.

Aiding user interface design

By helping to simulate such scenarios, the
model can direct an interface designer's
attention to potential design-facilitated
errors that might otherwise be overlooked.
Moreover, the model's ability to make
explicit how such errors might occur can
help indicate the best way to refine an
interface. For example, one of the
difficulties in designing a radar display is
balancing the need to present a large
volume of information against the need to
keep the display uncluttered. In this case,
by showing how the error results from low
traffic conditions, the simulation indicates
a clever fix for the problem: use an icon to
explicitly represent runway closures, but
only display the icon in low plane-load
conditions when it is most needed and
produces the least clutter

Conclusion

We have presented a GOMS-MHP style
approach to the problem of predicting
human habit capture errors in the domain
of air traffic control. Our model assumes
that people manage limited memory
retrieval resources by taking advantage of
perceptual indicators that a retrieval is
warranted, and by incorporating
knowledge about when retrievals should
occur into routine procedures. Habit
captures occur when decision
mechanisms fail to retrieve intentions or
knowledge of unusual conditions; lacking
the unretrieved information, decision
mechanisms act in accordance with

implicit default assumptions resulting in
error. The model helps to identify
situations in which such errors are
especially likely. Interface designers can
then use this information to reduce the
likelihood of error.

References

Anderson, J.R. (1990) The Adaptive
Character of Thought. Lawrence
Earlbaum Associates.

Baddeley, A.D. (1986) Working Memory.
Oxford University Press.

Card, S.K., Moran, T.P., and Newell, A.
(1983). The psychology of human-
computer interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Carrier, L.M. and Pashler, H. (1995).
Attentional limitations in memory retrieval.
Journal of Experimental Psychology:
Learning, Memory, & Cognition, 21,
1339-1348.

R.J. Firby. (1989) Adaptive execution in
complex dynamic worlds. Ph.D. thesis,
Yale University.

Freed, M. and Remington, R. (1997)
Managing decision resources in plan
execution. In Proceedings of the Fifteenth
Joint Conference on Artificial
Intelligence, Nagoya, Japan.

Freed (1998a) Managing multiple tasks in
complex, dynamic environments. In
Proceedings of the 1998 National
Conference on Artificial Intelligence,
Madison, WI.

Freed (1998b) Simulating human
performance in complex, dynamic
environments. Ph.D. thesis.
Northwestern Univ.

Gray, W. D., John, B. E., Atwood, M.E.
(1993). Project Ernestine: Validating a
GOMS Analysis for Predicting and
Explaining Real-World Task Performance.
Human Computer Interaction, 8, 237-
309.

[John94] John, B.E. and Kieras, D.E.
(1994). The GOMS Family of Analysis
Techniques: Tools for Design and
Evaluation. Carnegie Mellon University,
School of Computer Science, TR CMU-
CS-94-181.

Kieras, D.E. and Meyer, D.E. (1997) An
overview of the EPIC architecture for
cognition and performance with
application to human-computer interaction.
Human-Computer Interaction, in press.

Reason, J.T. (1990). Human Error.
Cambridge, UK: Cambridge University
Press.

Reason, J.T. and Mycielska, K. (1982).
Absent-minded? The psychology of
mental lapses and everyday errors.
Englewood Cliffs, NJ: Prentice-Hall.

Salthouse, T.A. (1991). Expertise as the
circumvention of human processing
limitations. In Ericsson, K.A. and Smith
J.A. (Eds.), Toward a general theory of
expertise (pp. 286-300), Cambridge.

Schank, R.C. (1986) Explanation
Patterns, Lawrence Earlbaum Associates,
Hillsadale, N.J.

Stein, Earl S. and Garland, Daniel.
(1993). Air traffic controller working
memory: considerations in air traffic
control tactical operations. FAA technical
report DOT/FAA/CT-TN93/37.
Vera, A.H. and Lewis, R.L. (1996)
Dissociating performance from learning:
an empirical evaluation of a computational
model. In Proceedings of the eighteenth
annual conference of the cognitive science
society, Lawrence Earlbaum Associates,
409-414, 1996.

